508 research outputs found

    Dirac fermions in a power-law-correlated random vector potential

    Get PDF
    We study localization properties of two-dimensional Dirac fermions subject to a power-law-correlated random vector potential describing, e.g., the effect of "ripples" in graphene. By using a variety of techniques (low-order perturbation theory, self-consistent Born approximation, replicas, and supersymmetry) we make a case for a possible complete localization of all the electronic states and compute the density of states.Comment: Latex, 4+ page

    Observation of dipole-mode vector solitons

    Full text link
    We report on the first experimental observation of a novel type of optical vector soliton, a {\em dipole-mode soliton}, recently predicted theoretically. We show that these vector solitons can be generated in a photorefractive medium employing two different processes: a phase imprinting, and a symmetry-breaking instability of a vortex-mode vector soliton. The experimental results display remarkable agreement with the theory, and confirm the robust nature of these radially asymmetric two-component solitary waves.Comment: 4 pages, 8 figures; pictures in the PRL version are better qualit

    Svortices and the fundamental modes of the "snake instability": Possibility of observation in the gaseous Bose-Einstein Condensate

    Full text link
    The connection between quantized vortices and dark solitons in a long and thin, waveguide-like trap geometry is explored in the framework of the non-linear Schr\"odinger equation. Variation of the transverse confinement leads from the quasi-1D regime where solitons are stable to 2D (or 3D) confinement where soliton stripes are subject to a transverse modulational instability known as the ``snake instability''. We present numerical evidence of a regime of intermediate confinement where solitons decay into single, deformed vortices with solitonic properties, also called svortices, rather than vortex pairs as associated with the ``snake'' metaphor. Further relaxing the transverse confinement leads to production of 2 and then 3 vortices, which correlates perfectly with a Bogoliubov-de Gennes stability analysis. The decay of a stationary dark soliton (or, planar node) into a single svortex is predicted to be experimentally observable in a 3D harmonically confined dilute gas Bose-Einstein condensate.Comment: 4 pages, 4 figure

    Watching dark solitons decay into vortex rings in a Bose-Einstein condensate

    Get PDF
    We have created spatial dark solitons in two-component Bose-Einstein condensates in which the soliton exists in one of the condensate components and the soliton nodal plane is filled with the second component. The filled solitons are stable for hundreds of milliseconds. The filling can be selectively removed, making the soliton more susceptible to dynamical instabilities. For a condensate in a spherically symmetric potential, these instabilities cause the dark soliton to decay into stable vortex rings. We have imaged the resulting vortex rings.Comment: 4 pages, 4 figure

    Instabilities of Higher-Order Parametric Solitons. Filamentation versus Coalescence

    Get PDF
    We investigate stability and dynamics of higher-order solitary waves in quadratic media, which have a central peak and one or more surrounding rings. We show existence of two qualitatively different behaviours. For positive phase mismatch the rings break up into filaments which move radially to initial ring. For sufficient negative mismatches rings are found to coalesce with central peak, forming a single oscillating filament.Comment: 5 pages, 7 figure

    Induced Coherence and Stable Soliton Spiraling

    Full text link
    We develop a theory of soliton spiraling in a bulk nonlinear medium and reveal a new physical mechanism: periodic power exchange via induced coherence, which can lead to stable spiraling and the formation of dynamical two-soliton states. Our theory not only explains earlier observations, but provides a number of predictions which are also verified experimentally. Finally, we show theoretically and experimentally that soliton spiraling can be controled by the degree of mutual initial coherence.Comment: 4 pages, 5 figure

    Split Instability of a Vortex in an Attractive Bose-Einstein Condensate

    Full text link
    An attractive Bose-Einstein condensate with a vortex splits into two pieces via the quadrupole dynamical instability, which arises at a weaker strength of interaction than the monopole and the dipole instabilities. The split pieces subsequently unite to restore the original vortex or collapse.Comment: 4 pages, 4 figures, added figures and references, revised tex

    Nonlinear Waves in Bose-Einstein Condensates: Physical Relevance and Mathematical Techniques

    Get PDF
    The aim of the present review is to introduce the reader to some of the physical notions and of the mathematical methods that are relevant to the study of nonlinear waves in Bose-Einstein Condensates (BECs). Upon introducing the general framework, we discuss the prototypical models that are relevant to this setting for different dimensions and different potentials confining the atoms. We analyze some of the model properties and explore their typical wave solutions (plane wave solutions, bright, dark, gap solitons, as well as vortices). We then offer a collection of mathematical methods that can be used to understand the existence, stability and dynamics of nonlinear waves in such BECs, either directly or starting from different types of limits (e.g., the linear or the nonlinear limit, or the discrete limit of the corresponding equation). Finally, we consider some special topics involving more recent developments, and experimental setups in which there is still considerable need for developing mathematical as well as computational tools.Comment: 69 pages, 10 figures, to appear in Nonlinearity, 2008. V2: new references added, fixed typo

    Tunable metal-insulator transition in double-layer graphene heterostructures

    Full text link
    We report a double-layer electronic system made of two closely-spaced but electrically isolated graphene monolayers sandwiched in boron nitride. For large carrier densities in one of the layers, the adjacent layer no longer exhibits a minimum metallic conductivity at the neutrality point, and its resistivity diverges at low temperatures. This divergence can be suppressed by magnetic field or by reducing the carrier density in the adjacent layer. We believe that the observed localization is intrinsic for neutral graphene with generic disorder if metallic electron-hole puddles are screened out
    • …
    corecore